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ABSTRACT: In this paper, we investigate the relationship between upper ocean heat content (OHC) and El Niño–
SouthernOscillation (ENSO) sea surface temperature (SST) anomalies mainly using the neutral recharge oscillator (NRO)

model both analytically and numerically. Previous studies showed that spring OHC, which leads SST by 6–12 months,

represents a major source of predictability for ENSO. It is suggested that this seasonality is caused by the seasonally varying

growth rate in SST anomalies. Moreover, a shortened ENSO period will lead to a reduced SST predictability from OHC,

with the most significant decrease occurring in the latter half of the calendar year. The cross-correlation relationship be-

tween OHC and ENSO SST anomalies is further identified in the damped and self-excited version of the recharge oscillator

model. Finally, we suggest that the seasonal growth rate of ENSO anomalies is the cause of the seasonality in the effec-

tiveness of OHC as a predictor in ENSO forecasting, particularly as it relates to the boreal spring persistence barrier and

associated spring predictability barrier. We also explain the shorter lead time between spring OHC and ENSO SST

anomalies after the turn of the twenty-first century in terms of the apparent higher frequency of the ENSO period.
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1. Introduction

The El Niño–Southern Oscillation (ENSO) phenomenon is

the most significant interannual signal of the climate system on

Earth (McPhaden et al. 2006; Cai et al. 2018), influencing pat-

terns of weather variability worldwide. Therefore, its predict-

ability has received considerable attention, with one major

outstanding problem being the boreal spring persistence barrier

(SPB) and the associated spring predictability barrier. This

barrier has long been noticed in anomalous tropical Pacific sea

surface temperature (SST) (e.g., Niño-3.4; 58S–58N, 1708–128W;

McPhaden 2003; Ren et al. 2016), sea level pressure (Troup

1965; Webster and Yang 1992), and rainfall (Walker and Bliss

1932;Wright 1979). Specifically, regardless of the initialmonth, a

damped persistence forecast loses its predictability most rapidly

in the following April–June, forming the SPB of ENSO (Fig. 1a;

Y. Jin et al. 2020). The SPB also shows a distinct decadal mod-

ulation, which may be related to thermal damping associated

with background SST change (Fang et al. 2019).

Previous studies suggested that ENSO is predictable up to

three seasons in advance, based on slow evolution of upper

ocean heat content (OHC; Latif et al. 1998). Meinen and

McPhaden (2000) found that OHC leads ENSO SST anomalies

in the eastern Pacific by 6–7months.Anderson (2007) found that

subsurface temperature anomalies in the western equatorial

Pacific during the boreal summer/fall tend to leadmature ENSO

conditions by 12–15 months.

This OHC shows a distinct seasonality of the effectiveness in

ENSO prediction. McPhaden (2003) demonstrated that ini-

tialization of upper OHC variations may lead to seasonally

varying enhancement of ENSO forecasting skill, with the most

significant enhancements for forecasts starting in the boreal

spring. That is to say, ENSOmodels often show improvements

in forecast skill across the SPB when initialized with observed

variations in upper OHC (Smith 1995; Xue et al. 2000).

Although the in-phase correlation of Niño-3.4 and OHC is

small (lead time5 0months), especially in the first six calendar

months, cross-correlation above 0.6 is found for spring anom-

alies in OHC leading Niño-3.4 by 7–12 months (Fig. 1b; the

95% significance level is 0.41 for 20 years of data). On the other

hand, persistent spring SST anomalies show no skill for such

long lead times (Fig. 1a). This point can be further identified in

Fig. 1c, which shows the difference between cross-correlation

(between OHC and Niño-3.4; Fig. 1b) and the Niño-3.4 auto-

correlation (Fig. 1a). For early to late spring, OHC is an effective

long lead predictor of ENSO SST anomalies (lead time is more

than 6 months; the difference is higher than 0.4 at 6 months lead

time in Fig. 1c); however, from summer to autumn, persistent

SST anomalies show a higher skill in predicting winter Niño-3.4
anomalies (lead time is about 3–5months; the difference is negative

in Fig. 1c) compared with using OHC.As such, OHC anomalies in

the spring can be employed to predict the peak SST anomalies.

Recent studies have found a twenty-first-century phase shift

in the relationship between OHC and ENSO SST anomalies

such that OHC anomalies in the spring are less effective as an
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ENSO SST predictor (McPhaden 2012). Figure 2a shows that

this lead time is shifted to only 3–4 months for OHC anomalies

in the early to late spring. Another way to see the reduced

predictability from OHC is in Fig. 2b: during 1980–99, the

cross-correlation between OHC and Niño-3.4 is about 0.6 at

12-month lead time (black solid line in Fig. 2b). However, this

cross-correlation is smaller after 2000 with the greatest de-

crease occurring in the last 6 months of the calendar year (blue

solid line in Fig. 2b). The reason for this reduced predictability

of ENSO is still under debate. One possible mechanism is that

the contribution of the thermocline feedback is decreased (Lai

et al. 2018). Considering that OHC plays an important role in

ENSO predictability (especially for crossing the SPB) and its

effectiveness undergoes decadal modulation, we are interested

in the following two questions: 1) How doesOHC influence the

seasonality of ENSO predictability? 2) What factors may re-

duce ENSO predictability based on OHC?

The persistence barriers of SST and OHC in the tropical

Pacific have been discussed in Part I and Part II of this article

(Jin and Liu 2021a,b; hereafter cited as Part I and Part II), re-

spectively. In Part I, we showed how the timing and strength of

the SPB depended on ENSO period using analytical and nu-

merical versions of the recharge oscillator model. In Part II, we

suggested that the seasonal growth rate of SST anomalies con-

trols persistence barriers in both SST and OHC. Particularly,

with the addition of a seasonal SST growth rate in the re-

charge oscillator model, approximate analytical solutions for

the SST and OHC autocorrelation functions demonstrate

that the timing of persistence barrier for OHC leads that of

SST by a half year and the strength of the two persistence

barriers is the same.

Here in Part III we attempt to understand ENSO predict-

ability fromOHCmainly in the context of the neutral recharge

oscillator (NRO) model. Both analytical and numerical solutions

FIG. 1. (a) The autocorrelation of Niño-3.4 SST anomalies for 1980–99 showing persistence as a function of start month. (b) The cross-

correlation of OHC and Niño-3.4 SST as a function of start month and lead time for 1980–99. (c) The difference of (b) minus (a).

FIG. 2. (a) The cross-correlation of monthly OHC and Niño-3.4 SST anomalies for 2000–10. (b) The cross-

correlation with OHC leading SST (solid lines) and autocorrelation of SST (dashed lines) at 12-month lead time

during 1980–99 (black lines) and 2000–10 (blue lines).
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of the cross-correlation between OHC and SST are derived in

theNROmodel. These solutions show that with the addition of

seasonal growth rate in SST, OHC can improve the predict-

ability of SST at long lead times from the spring initial condi-

tions. This explains why accurate initialization of OHC in

ENSO forecast models often reduces the SST spring predict-

ability barrier.Wewill also show how a shorter ENSOperiod is

associated with a reduced lead time of OHC from the spring as

observed after the start of the twenty-first century.

The paper is arranged as follows. The recharge oscillator

model and the reanalysis data we use are presented in section 2.

In sections 3 and 4, we explore the cross-correlation between

OHC and SST in the NRO model in analytical and numerical

solutions, respectively. This cross-correlation relationship will

also be identified in the damped and self-excited recharge os-

cillator model in section 5. In section 6, we interpret the ob-

servations in the light of these modeled cross-correlation

relationships. A summary and discussion are given in section 7.

2. Model and data

a. The parametric recharge oscillator model

Our ENSO model is based upon the recharge oscillator

model (Jin 1997a,b), which describes the relationship between

variations in OHC and SST anomalies (Meinen andMcPhaden

2000). It contains cubic nonlinearity, quadratic nonlinearity,

and stochastic noise forcing. This recharge oscillator captures

the dynamic relationship between the equatorial Pacific ther-

mocline (or OHC) anomaly (H) and eastern equatorial Pacific

SST anomaly (T) and can be written as follows (Chen and

Jin 2020):

dT

dt
52l(t)T1v

0
H1sj2 cT3 1bT2 , (2.1)

dH

dt
52v

0
T , (2.2)

dj

dt
52dj1w(t) . (2.3)

Here, l is the damping rate (or2l the growth rate) of the SST

anomaly with l(t)5R01 l0 sin(vAt) varying seasonally in the

annual frequency vA 5 (2p/12) month21, which leads to the

phase locking of ENSO variance (Chen and Jin 2020) and

SPB (Levine and McPhaden 2015). The ENSO linear fre-

quency is v0; w(t) is white noise, j is red noise with a decay

time scale of 1 day21, and s is the noise amplitude. The

quadratic (b) and cubic (c) nonlinear terms roughly represent

nonlinear dynamic heating from both nonlinear advection

and upwelling and the effects of ENSO modulation of trop-

ical instability waves (An 2008). Note here that the damping

term of OHC is neglected in Eq. (2.2). This is because on

seasonal and longer time scales, the changes in OHC are

mainly governed by the geostrophic response to the wind

stress forcing rather than by the damping of OHC itself

(Burgers et al. 2005).

An approximate analytical solution for the cross-correlation

function between OHC and SST is obtained from the neutrally

stable, unforced case of the recharge model with R0 5 0, s5
0, c 5 0, and b 5 0. Previous studies have shown that the

approximate analytical solution of variance in this neutral

model is able to explain the seasonal phase locking of ENSO

variance (Stein et al. 2014). Here we will derive the corre-

sponding cross-correlation functions and in turn examine

ENSO predictability from OHC. The robustness of the

NRO model results will then be confirmed numerically in

the recharge model in the damped regime with noise forcing

(R0 . 0, s . 0, c 5 0, b 5 0) and the self-excited unstable

regime (R0 , 0, s5 0, c. 0, b5 0). All the numerical results

are from the last 500 years of 1000 model year simulations.

The numerical model equations, Eqs. (2.1)–(2.3), are solved

with a time step of 4 h.

b. Data

Here we use two datasets from January 1980 to December

2010. One is theHadley Centre Global Sea Ice and Sea Surface

Temperature (HadISST; 18 3 18) observational SST dataset

version 1.l (https://climatedataguide.ucar.edu/climate-data/sst-

data-hadisst-v11) to define general features of the Niño-3.4
SST anomaly for ENSO. The other is for 208C (Z20) isotherm

depth data from the monthly Simple Ocean Data Assimilation

(SODA; 0.58 3 0.58; Carton andGiese 2008). The SODA3.12.2

data are integrated over 58S–58N, 1208E–808W (McPhaden

2003) to estimate the depth of Z20. This depth of Z20 is deter-

mined by interpolation of the gridded subsurface temperature.

We then use Z20 as a proxy to represent OHC. Monthly OHC

and Niño-3.4 index anomalies are computed relative to a mean

seasonal period based on a 31-yr (1980–2010) climatology.

3. Analytical solution for the NRO model

In this section, the relation betweenOHC and SST is studied

by deriving an approximate analytical solution to the NRO

model. For the linear scenario of the NROmodel (R0 5 0, s5
0, c5 0, b5 0), an approximate analytical solution of T can be

obtained for a weak annual cycle of the growth rate, or small l«
[nondimensional number, l« 5 (l0/vA) � 1]. The autocorre-

lation of T can be written rT(m, t), where m denotes calendar

month from 1 to 12 (representing January to December) and

t is the lag in months. Then, from Part I we have

r
T
(m, t)’ cosv

0
t1 2l

«
A sinv

0
t sin

v
A
t

2
cos

�
v

A
m1

v
A
t

2

�
,

(3.1)

where A5v0vA/(v
2
A 2 4v2

0) and B5 (v2
A 2 2v2

0)/(v
2
A 2 4v2

0).

According to Eq. (3.1), the relationship between the calendar

month (m) and the minimum autocorrelation at a specific t can

be derived as follows:

v
A
m1

v
A
t

2
5p . (3.2)

For t close to 0, the minimum autocorrelation occurs in June

(m 5 6); when t increases, the timing of minimum autocorre-

lation moves to late winter.
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By using the relationship between SST andOHC [Eq. (2.2)],

the time series of OHC can be derived as

H(t)5 cos(v
0
t)1

1

2
l
«
v
0

�
B2A

v
A
1v

0

cos(v
A
1v

0
)t

2
B1A

v
A
2v

0

cos(v
A
2v

0
)t

�
. (3.3)

Defining C1 5 (B2A)/(vA1 v0), C2 5 (B1A)/(vA2 v0),H

solutions can be simplified as

H(t)5 cos(v
0
t)1

1

2
l
«
v

0
C

1
cos(v

A
1v

0
)t

2
1

2
l
«
v
0
C

2
cos(v

A
2v

0
)t . (3.4)

According to Eq. (3.4), H is controlled by the interaction be-

tween the ENSO cycle frequency (v0) and the annual cycle

(vA). This is similar to the combination mode (C-mode) de-

scribed by Stuecker et al. (2015) in the western Pacific

warm pool.

The covariance function SH,T(m, t) can be written as

S
H,T

(m, t)’
1

2
sinv

0
t2

1

2
l
«
A cosv

0
t sin[v

A
(m1 t)]

1
1

2
l
«
B sinv

0
t cos[v

A
(m1 t)]

1
1

2
l
«
v

0

�
1

2
(C

1
2C

2
)cosv

A
m sinv

0
t

2
1

2
(C

1
1C

2
)sinv

A
m cosv

0
t

�
(3.5)

with t . 0 indicating that H leads T by t months. Then the

cross-correlation rH,T(m, t) can be derived as (see appendix A)

r
H,T

(m, t)’ sinv
0
t2 2l

«
A cosv

0
t cos

v
A
t

2
sin

�
v

A
m1

v
A
t

2

�
.

(3.6)

Equation (3.6) suggests the reason why the spring OHC affects

SST predictability at longer lead times (6–12 months). First,

when l« 5 0 (i.e., there are no seasonal variations in growth

rate), Eq. (3.6) shows that the timing of maximum cross-

correlation occurs at 1/4 ENSO period. Thus, OHC is a pre-

dictor of ENSOSST at these lead times. However, this solution

fails to show the seasonality in the effectiveness of OHC in

ENSO forecasting. That is why we add the seasonality in the

NRO model. When l« is larger than 0, according to Eq. (3.6),

the relationship between the calendar month and maximum

cross-correlation for a specific t can be obtained as

v
A
m1

v
A
t

2
5
3p

2
. (3.7)

When t is small (t / 0), a relatively large cross-correlation

occurs in boreal autumn (m 5 9, representing September);

when t increases (t / 12 months), the timing of maximum

cross-correlation moves forward into spring (m 5 3, repre-

senting March). On the other hand, according to Eq. (3.2), for

large lead times (6–12 months), the autocorrelation of T

reaches its minimum in the spring such that OHC is a better

predictor of ENSO SST than SST itself at this time of year.

To see why spring OHC is less effective at long lead times

(e.g., at 12-month lead times) for some cases (e.g., after the

2000s;McPhaden 2012), we simplify Eq. (3.6) by definingm*5
vAm, t*5 vAt, v*5 v0/vA such that Eq. (3.6) can be written

as follows:

r
H,T

(m*, t*)’ sinv*t*2 2l
«
A cosv*t* cos

t*
2
sin

�
m*1

t*
2

�
.

(3.8)

Specifically, we use t 5 12 (t* 5 2p) to understand the mod-

ulation in the effectiveness of OHC at long lead times. Taking

t* 5 2p to Eq. (3.8), rH,T(m*, p) can be further simplified as

r
H,T

(m*, 2p)’ sin(v*3 2p)2 2l
«
A cos(v*3 2p) sin(m*).

(3.9)

The relationship between cross-correlation and ENSO period at

long lead times (i.e., 12 months) can be identified in Eq. (3.9).

When the ENSO period decreases to biennial (i.e., v*increases
to 1/2), sinv*3 2p [first termon the right-hand side of Eq. (3.9)]

becomes smaller, indicating that a reduced ENSO period will

decrease the cross-correlation for all calendar months. The

second term on the right-hand side of Eq. (3.9) suggests an in-

teraction between the annual frequency and the lower fre-

quency. When v* increases to 1/2, cos(v* 3 2p) decreases

to 21 and 2A* cos(v* 3 2p) increases. Accordingly, for 0 ,
m* , p (initial month ranges from January to June), as

sin(m*) . 0, 22l«A cos(v* 3 2p)*sin(m*) becomes larger

indicating increased predictability. On the other hand, for p ,
m*,2p (for initial month from July toDecember), sin(m*), 0

and 22l«A cos(v* 3 2p)sin(m*) becomes smaller, implying a

loss of predictability. Combining two terms on the right-hand

side of Eq. (3.9), a shortened ENSO period will correspond to a

reduced predictability from OHC with its greatest decrease in

predictability in the last six months of the calendar year.

We have found that with a seasonal growth rate in SST

anomalies, OHC is a source of predictability at large lead times

(6–12 months) for the boreal winter SST. Moreover, this sea-

sonality of ENSOpredictability fromOHC ismodulated by the

period of ENSO. We will further examine these features next

through numerical solutions.

4. Numerical solution for the NRO model

In this section, features of the analytical solution derived

above are compared to numerical solutions of the NROmodel.

We first discuss the reason why we can use spring OHC as a

predictor for winter SST. When the ENSO period is 2.5 years

(v0 5 p/15 month21) and l« 5 0.6/p (Part I), the autocorre-

lation of SST in the spring decays to zero after a 6–12-month

lag (Fig. 3a) in the numerical solution. On the other hand, the

cross-correlation between OHC and SST increases to a peak

(Fig. 3b) when spring OHC leads SST at these lead times. As

such, OHC can be regarded as a predictor of winter SST. The

same holds true when ENSO period is lengthened (4 years;

v0 5 p/24 month21, l« 5 0.6/p; Fig. 3b). This result is consis-

tent with Eq. (3.7) and the analytical solution (Fig. A1).
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However, spring OHC is less effective as a predictor for

winter SST when the ENSO period is shortened (Fig. 3e).

When ENSO period is 4 years (v0 5 p/24 month21), the cross-

correlation is close to 1 at lead time of 12 months. As v0 in-

creases (i.e., ENSO period is 2.5 years), the cross-correlation

betweenOHC and SST is smaller for all calendar months (blue

vs black line in Fig. 3e) at longer lead times (e.g., 12 months).

Moreover, this cross-correlation decreases more for autumn

OHC than spring OHC at the same lead time (Fig. 3e). These

two features can be identified in the first and second term on

the right-hand side of (3.9), respectively.

The role of ENSO period in affecting the cross-correlation

at long lead times for all calendar months can be further seen

in Fig. 4 for periods ranging from 2.5 to 5 years. The cross-

correlation between OHC and SST decreases for all calendar

months when ENSO period is shortened to 2.5 years, which is

FIG. 3. Numerical solutions for the NRO model. (a) The persistence of SST and (b) the cross-correlation between OHC and SST for

ENSO period of 2.5 years (v0 5 p/15 month21). Lead times. 0 indicate that OHC leads SST. (c),(d) As in (a) and (b), but for an ENSO

period of 4 years (v05 p/24 month21). (e) The cross-correlation at 12-month lead time when the ENSO period is 2.5 years (blue line) and

4 years (black line).

FIG. 4. The cross-correlation at 12-month lead time (OHC leading SST) from the NROmodel with l«5 0.6/p for

all calendar months when ENSO period ranges from 2.5 to 5 years. (a) Analytical solution and (b) numerical

solution.
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evident in both the analytical and numerical solutions.

However, the cross-correlation decreases much less during

the first half of the year compared to the latter half, due to the

interaction between the annual frequency and lower ENSO

frequency.

In summary, our study of the NRO model here shows that

the seasonally varying growth rate is the cause of the season-

ality in the effectiveness of OHC as a predictor of ENSO SSTs.

When the ENSO period decreases, so too does the effective-

ness of spring OHC in ENSO predictability. We note that for

these cases without OHC damping the long lead correlations

are artificially high in the NRO, but this does not obscure the

central issue we address in Fig. 4, which is the frequency de-

pendence of OHC as a predictor of ENSO SST variations. We

further explore these relationships in the more complex dam-

ped regime (R0. 0, s. 0, c5 0, b5 0) and self-excited regime

(R0 , 0, s 5 0, c . 0, b 5 0).

5. Numerical solutions for damped and self-excited
ENSO regimes

a. Damped regime

Parameters set for the damped regime are (Chen and Jin

2020) R0 5 20.1 month21, l« 5 0.6/p, s 5 1/9 month21, and

d 5 0.66 month21. When the ENSO period v0 is defined as

v0 5 p/15 month21 (i.e., 2.5 years), the autocorrelation of

spring SST decays to zero at leads of about 6–12 months

(Fig. 5a), while the cross-correlation between OHC and SST

reaches its maximum (Fig. 5b). This is also consistent for longer

ENSO periods (e.g.,v0 5 p/24 month21; Fig. 5c vs Fig. 5d).

Furthermore, the ENSO period can affect ENSO pre-

dictability from OHC at long lead times of, for example,

12 months (Fig. 5e). When the ENSO period is 4 years, the

cross-correlation is close to 0.7 at this lead time (black line in

Fig. 5e). Note here that, because of the effect of damping,

the cross-correlation is smaller than in the NRO model at

this lead time. When ENSO period decreases to 2.5 years,

the cross-correlation decreases for all calendar months.

Moreover, the largest decrease of cross-correlation occurs

in July, two months earlier than in the NRO model (Fig. 5e

vs Fig. 3e) because of annual mean damping. This annual

mean damping will shift the timing of SPB (Liu et al. 2019)

as reflected in the cross-correlation. The relationship be-

tween ENSO period and cross-correlation at large lead

times is further demonstrated in Fig. 6. With the lengthened

of ENSO period, the cross-correlation is higher, with the

greatest impact of OHC in the latter half of the year.

b. Self-excited regime

In the self-excited regime, we set the parameters for ENSO as

R05 0.1 month21, c5 1/62.3 month21, and b5 0 (Chen and Jin

2020). Here we also set l« 5 0.6/p to be consistent with the

damped regime. When v0 5 p/15 month21 (ENSO period is

2.5 years), a strong persistence barrier is found for SST in the

spring (Fig. 7a), while OHC is a significant predictor of SST at

6–12-month lead times (Fig. 7b). A similar feature can be found

when ENSO period increases (v0 5 p/24 month21; Fig. 7d).

Moreover, a shortened ENSO period results in OHC in the

spring being less effective as a predictor of ENSO SST. When

the ENSO period decreases from 4 to 2.5 years, the cross-

correlation is reduced, with the greatest decrease occurring late

FIG. 5. As in Fig. 3, but for the damped recharge oscillator model.

8572 JOURNAL OF CL IMATE VOLUME 34

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 05/10/22 07:04 PM UTC



in the calendar year (Fig. 7e). This frequency dependence is

further illustrated in Fig. 8.

6. Understanding the relationship between OHC and
ENSO SST in observations

In the previous section, we compared results for two dif-

ferent ENSO regimes with the NRO mode and found consis-

tent robust features that can be used to explain the seasonality

of ENSO predictability based on OHC. In particular, the

seasonally varying growth rate of SST anomalies accounts for

the strong seasonally varyingOHC impact on the predictability

of ENSO SST. These results can help us interpret observed

variability in the relationship between OHC and ENSO SSTs.

For instance, during both 1980–99 and 2000–10, OHChas more

influence on the predictability of ENSO SST in the spring

compared to the autumn at long (e.g., 12 months) lead times

(Figs. 1 and 2). The main reason for this feature is the seasonal

cycle of SST growth rate according to our analytical and nu-

merical model solutions. This growth rate is specified in our

formulation of the recharge oscillator theory and is controlled

by background conditions in the tropical Pacific (Jin et al. 2019)

and sensitivity parameters (e.g., the response of wind stress on

the SST anomalies; Stein et al. 2014; F.-F. Jin et al. 2020).

Observations also indicate that a shorter ENSO period is re-

lated to the reduced predictability from OHC after the twenty-

first century (McPhaden 2012). Specifically, for 1980–99, spring

OHC led ENSO SST anomalies at lead times up to 12 months

with high correlation (Fig. 2). However, after the turn of the

twenty-first century, this predictability was reduced (Fig. 2b),

with its largest decrease occurring in the last six months of the

calendar year. Moreover, five El Niños occur between 1980 and

1999 (at roughly a period of 4 years) versus four between 2000

and 2010 (roughly a period is 2.5 years). Thus El Niño occurred

more frequently in the early twenty-first century (McPhaden

2012), with a period shortening from quasi-quadrennial to quasi-

biennial after 2000 (see also Wang and Ren 2017). Thus, a

shorter ENSO period is related to reduced ENSO predictability

based on OHC. Moreover, the interaction of annual cycle and

ENSO period variations leads to a greater loss of predictability

in the latter half of the calendar year.

FIG. 7. As in Fig. 5, but for the self-excited recharge oscillator model.

FIG. 6. As in Fig. 4a, but for the damped recharge oscillator model.
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As noted by McPhaden (2012), the shift toward higher-

frequency ENSO events with lower predictability at the turn

of the twenty-first century coincides with a shift toward more

frequent central Pacific (CP) versus eastern Pacific (EP) ElNiño
events. The recharge oscillator theory, with only 1 degree of

freedom for ENSO SST variability, cannot explicitly represent

what we now commonly refer to as ENSO diversity (i.e., ENSO

events with different spatial structures and temporal evolution)

(Feng et al. 2020; Capotondi et al. 2020). However, our results

are consistent with both observations andmore complex general

circulation models (e.g., Kug et al. 2009) that indicate OHC is

less effective as a predictor of CP events than EP events.

7. Summary and discussion

This paper attempts to understand the observed relationship

between OHC and ENSO SST anomalies using simple theoretical

concepts building on recharge oscillator theory. Based on the pre-

vious studies indicating that upper OHC in the spring represents a

major source of predictability for ENSO SST anomalies at lead

times of 6–12 months (Meinen and McPhaden 2000; McPhaden

2003), an analytical solution derived from the NRO model shows

that this relationship is based on the seasonal growth rate in SST

anomalies. Moreover, the analytical solution suggests that a short-

ened ENSO period will lead to a decrease of SST predictability

from OHC, with the smallest decrease in the first half of the cal-

endar year and the largest decrease in the last half of the calendar

year. This differential reduction in predictability is due to the in-

teraction between annual frequency and the lower ENSO fre-

quency.These features are also identified in thenumerical solutions

to the NRO model and in the damped and self-excited recharge

oscillator model formulations. As such, these results indicate that

the seasonally varying growth rate explains the seasonality in the

effectiveness of OHC as a predictor in ENSO forecast model ini-

tialization (Smith et al. 1995). Moreover, the phase shift in the

relationship between OHC and ENSO SST at the start of the

twenty-first century (McPhaden 2012) is consistent with a shorter-

period ENSO cycle.

The spring persistence barrier and predictability barrier are

related but not identical. The spring predictability barrier de-

scribes the dramatic drop in prediction skill across the spring for

numerical predictions of ENSO. According to the previous

studies, the initial errors play an important role in this loss of

predictability (Mu et al. 2007; Duan et al. 2009; Duan and Wei

2013; Duan and Hu 2016). On the other hand, seasonal cycle of

SST growth rate causes the SPB (Levine andMcPhaden 2015; Jin

et al. 2019). Specifically, a small growth rate (i.e., a weak coupling

between ocean and atmosphere) in the spring leads to the per-

sistence barrier. As a result of this small growth rate, initial errors

are more prominent and affect the forecasts more readily com-

pared to other seasons.As such, SPB as a feature of theENSO life

cycle is an indicator of its predictability during the springtime.

Our approachhas been to prescribe the frequencyof theENSO

cycle in the context of the recharge oscillator theory to examine

how ENSO periodicity affects predictability. The question of

what causes these changes in period is thus beyond the scope of

this study. Lu et al. (2018), however, discuss how thermocline

and zonal advective feedbacks, operating within the frame-

work of recharge oscillator dynamics, control ENSO period-

icity v0. Further research on how these competing processes

affect ENSO predictability is warranted.

We should also bear in mind that other factors may also affect

the relationship between ENSO SST and OHC. According to

Lübbecke and McPhaden (2014), the ENSO cycle was not only

shorter in the 2000s, but more damped, which would strengthen

ENSOSPB(Y. Jin et al. 2020) and in turn, also reduce the lead time

for OHC as predicted in our model (more details can be found in

solutions to the analytical and numerical solutions of the damped

recharge oscillator in appendixB). In addition, other factors such as

westerly wind bursts (WWBs), which act as state-dependent noise

forcing (Levine andMcPhaden 2015) andwhich have an imprint on

OHC itself (Neske and McGregor 2018; Planton et al. 2018), can

affect the relationship between SST and OHC anomalies. How to

understand the combined effects of these processes on ENSO

predictability from OHC requires further study.
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APPENDIX A

Derivation of Cross-Correlation between SST and OHC
Based on the NRO Model

The seasonal variance of OHC [s2
H(m)] can be obtained as

follows:

FIG. 8. As in Fig. 6a, but for the self-excited recharge oscilla-

tor model.
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The analytical solution, Eq. (A4), captures the major features

of the numerical solution (Fig. 3), as shown in Fig. A1. When

v0 5 p/15 and p/24 (l« 5 0.6/p), respectively, we can see that

the cross-correlation is large for springOHC at long lead times.

These results also indicate that a shorter ENSO period corre-

sponds to a reduced predictability (black vs blue line in

Fig. A1e).

APPENDIX B

The Role of Damping in the Cross-Correlation between
OHC and SST

The damped recharge oscillator model (without seasonally

varying in growth rate) can be written as

FIG. A1. As in Fig. 3, but for analytical solutions of the NRO model.
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Here, R0 is annual mean damping rate (2R0 represents the

growth rate). According to the perturbation method (An and

Jin 2010), the cross-correlation between SST and OHC (t. 0

indicates that OHC leads SST for t month) can be derived

analytically as follows:

r
H,T
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where V5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
0 2 (R0/2)

2
q

.

As R0 tends to 0, the timing of maximum cross-correlation

(MCR) occurs at 1/4 ENSO period. On the other hand, for R0

close to 2v0, V tends to be zero and MCR occurs when t / 0.

As such, for a larger R0 (i.e., a more damped system) the lead

time between OHC and ENSO SSTs will decrease.

Both analytical and numerical solutions show that a

smaller R0 (i.e., less damped system) will increase the lead

time between OHC and SST, as shown in Fig. B1. If we set

ENSO to 4 years (v0 5 p/24 month21) with R0 5 0.1 month21

the MCR occurs at 9 months and is 0.6. When we increase

R0 to 0.25 month21, the MCR is smaller (0.35) and the

timing is shortened (8 months). As such, the effectiveness of

OHC in ENSO forecasting is reduced as the system becomes

more damped.
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